C Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

# **Preliminary** communication

# Cycloheptatriene-rhodium(I) acetylacetonate

JOHN M. BROWN and DAVID G. COLES

Department of Molecular Sciences, University of Warwick, Coventry CV4 7AL (Great Britain) (Received August 10th, 1973)

#### SUMMARY

Cycloheptatriene—rhodium(I) acetylacetonate has been prepared; the  $d_7$  analogue undergoes deuterium scrambling at 60°.

In contrast to the range of  $h^6$  (triene) and  $h^4$  (conjugated diene) complexes of cycloheptatriene<sup>1,2\*</sup> which have been proposed and characterised, very few examples of  $h^2$ ,  $h^2$  (non-conjugated chelating diene)<sup>3\*\*</sup> complexes exist and in these the mode of bonding is inferred rather than defined.

The reaction of rhodium(1) complexes with cycloheptatriene has rather a chequere history, for Bonati and Wilkinson<sup>5</sup> reported that reaction of the olefin with dicarbonyl rhodium(1) acetylacetonate led to the isolation in low yield of bicyclo[2.2.1]heptadiene-rhodium(1) acetylacetonate. It was subsequently shown that this arises from traces of the isomeric olefin in commercial cycloheptatriene<sup>6,7</sup>, and is not produced after careful prior purification. We find that the reaction of pure cycloheptatriene and diethylene rhodium(1) acetylacetonate in ether at 0° allowed the preparation of a crystalline complex<sup>\*\*\*</sup> (II) whose NMR spectrum is shown in Fig. 1 and which is clearly derived from unrearranged cycloheptatriene. Coupling constants are similar to those in the parent hydrocarbon and in particular the values  $J_{1,7exo}$  4 Hz and  $J_{1,7endo}$  7.5 Hz are in keeping with minimal distortion of geometry. The chemical shifts of H<sub>2</sub> (upfield) and H<sub>1</sub> (downfield) are the reverse of observations on  $h^6$ -complexes, or the parent hydrocarbon<sup>8</sup>. Although stable to 90° in hydrocarbon solvents, (II) is degraded over the course of a few hours in carbon

Satisfactory combustion analysis.

<sup>&</sup>lt;sup>\*</sup> Copper and alver complexes of indeterminate hapticity have been prepared<sup>2</sup>.

<sup>\*\*</sup> Although cycloheptatriene is similar to cyclooctatetraene in ring puckering ( $\alpha = 40.5^{\circ}$ ;  $\beta = 36^{\circ}$ , in (I))<sup>4</sup> a major hindrance to chelation may be the inability of the 1,2 and 4,5 double bonds to align in parallel planes.



Fig.1. PMR spectrum of (II) in  $C_6 D_6$  with  $\delta$  6.03 (H<sub>3</sub>,  $J_{2,3} < 2$  Hz) 5.14 (AcacC-H) 4.09 (H<sub>1</sub>,  $J_{1,2}$  10 Hz,  $J_{1,7-exo}$  4 Hz,  $J_{1,7-endo}$  7.5 Hz) 3.56 (H<sub>7-endo</sub>, J(Rh)<sub>7-endo</sub> < 1 Hz) 3.18 (Hz) 2.74 (H<sub>7-exo</sub>, J(<sup>103</sup>Rh)<sub>7-exo</sub> 4 Hz) 1.75 (AcacCH<sub>3</sub>) ppm.

tetrachloride and acetylacetonylcycloheptatriene (III)<sup>9</sup> (identified by NMR; m.p. and mixed m.p.  $124^{\circ}$ ) could be isolated in low yield.

Since sigmatropic hydrogen shifts occur more rapidly in Group VII complexes than in the parent hydrocarbon<sup>10,11</sup> and specific *endo*-migration<sup>\*</sup> is involved, we explored the possibility of a similar reaction in (II). Rapid isomerisation is precluded by the lack of change in the NMR spectrum up to 85°, and we therefore prepared the analogue

<sup>\*</sup> endo-Hydrogen-migration occurs in 7-exo-[2H]-cycloheptatrieneiron tricarbonyl<sup>118</sup> at 75° <sup>11</sup> b

derived from 7-[<sup>2</sup>H]-cycloheptatriene (from tropylium tetrafluoroborate and LiAlD<sub>4</sub>). At 60° (Table 1) isomerisation occurs, and recovery of cycloheptatriene by NaCN treatment after 18 h shows extensive scrambling. In the initial phases of reaction, 7-exoprotium appeared to grow faster than 7-endo-protium, in keeping with selective endomigration. Recovered cycloheptatriene had much less than 0.5 atom of deuterium at the 7-position, from which we infer that exchange with a trace of free cycloheptatriene masks the overall selectivity of scrambling at long reaction times<sup>12</sup>.

### TABLE 1

|                            | Number of hydrogen atoms at |                        |      |                    |
|----------------------------|-----------------------------|------------------------|------|--------------------|
|                            | C1,6                        | $C_{2,3} + C_{7-endo}$ | C3,4 | C <sub>7-exo</sub> |
| Initial                    | 2.00                        | 2.45                   | 1.90 | 0.60               |
| 60°/30 min                 | 1.85                        | 2.55                   | 1.95 | 0.70               |
| 60°/90 min                 | 1.90                        | 2.50                   |      | 0.85               |
| 60°/1080 min               | 1.70                        | 2.50                   | 1.80 | 1.00               |
| Recovered cycloheptatriene | 1.80                        | 1.50                   | 1.70 | 2.00 ª             |

DEUTERIUM DISTRIBUTION IN (II) ESTIMATED FROM THE 60 MHz NMR SPECTRUM BY DUPLICATE TRACINGS AND WEIGHINGS (The non-random distribution appears real, but the accuracy of the experiment precludes a more detailed analysis.)

a exo and endo

A more sensitive probe than migration of 0.5 atom deuterium is required to define the course of hydrogen migration, and we hope to carry out experiments with 7.<sup>13</sup>C-cycloheptatriene in the future.

#### ACKNOWLEDGMENT

We thank the S.R.C. for a CAPS award (to D.G.C.) in collaboration with Bush Boake Allen, Ltd. An exchange of information with Professor J. Lewis, who has also prepared compound II, was most helpful.

### REFERENCES

- Reviewed by H.W. Quinn and J.H. Tsai, Advan. Inorg. Chem. Radiochem, 12 (1970) 372. See also R.R. Schrock and J.A. Osborn, J. Amer. Chem. Soc., 93 (1971) 3089; M. Green and T.A. Kuc, J. Chem. Soc. Dalton, (1972) 832.
- 2 H.W. Quinn and R.L. VanGilder, Can. J. Chem., 48 (1970) 2435; R.G. Salomon and J.K. Kochi, J. Amer. Chem. Soc., 95 (1973) 1899.
- 3 C.R. Kistner, J.R. Doyle, N.C. Baenziger, J.H. Hutchinson and P. Kasper, Inorg. Chem., 3 (1964) 1525; J. Amer. Chem. Soc., 82 (1960) 535; G. Winkhaus and H. Singer, J. Organometal. Chem., 7 (1967) 487.
- 4 M. Tratteberg, Acta Chem. Scand., 20 (1966) 1724; J. Amer. Chem. Soc., 86 (1964) 4265.

#### PRELIMINARY COMMUNICATION

- 5 F. Bonati and G. Wilkinson, J. Chem. Soc., (1964) 3156.
- 6 B.E. North and M. Rosenblum, J. Organometal. Chem., 21 (1970) 445.
- 7 R. Crigg and J.L. Jackson, Tetrahedron Lett., (1970) 3493.
- 8 H, Gunther, R. Wenzl and W. Grimme, J. Amer. Chem. Soc., 91 (1969) 3808; H. Gunther,
  M. Goerlitz and H.H. Hinrichs, Tetrahedron, 24 (1968) 5665; H. Kessler and E. Muller, Z. Naturforsch. B, 22 (1967) 283.
- 9 K. Conrow, J. Amer. Chem. Soc., 81 (1959) 5461.

C34

- 10 M.L. Foreman, G.R. Knox, P.L. Pauson, K.H. Todd and W.E. Watts, J. Chem. Soc., Perkin II, (1972) 1141.
- 11 (a) H. Maltz and B.A. Kelly, Chem. Commun., (1971) 1390; (b) D.G. Coles, unpublished work.
- 12 Cf. W.R. Roth and W. Grimme, Tetrahedron Lett., (1966) 2347.